Article ID Journal Published Year Pages File Type
6131702 Current Opinion in Microbiology 2016 7 Pages PDF
Abstract
Effector-triggered immunity (ETI) is conferred by dominant plant resistance (R) genes, which encode predominantly nucleotide-binding and leucine-rich repeat domain proteins (NLRs), against cognate microbial avirulence (Avr) genes, which include bacterial type III secreted effectors (T3Es). The 'guard model' describes the mechanism of T3E perception by plants, whereby NLRs monitor host proteins ('sensors') for T3E-induced perturbations. This model has provided a molecular framework to understand T3E perception and has rationalized how plants can use a limited number of NLRs (∼160 in Arabidopsis) to contend with a potentially limitless number of evolving effectors. In this review we provide a characteristic overview of plant T3E sensors and discuss how these sensors convey the presence of T3Es to NLR proteins to activate ETI.
Related Topics
Life Sciences Immunology and Microbiology Microbiology
Authors
, , ,