Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
613306 | Journal of Colloid and Interface Science | 2006 | 10 Pages |
Spatio-temporal evolution of liquid phase clusters during drying of a granular medium (realised by random packing of cylindrical particles) has been investigated at the length-scale of individual pores. X-ray microtomography has been used to explicitly resolve the three-dimensional spatial distribution of the solid, liquid, and gas phases within the wet particle assemblies. The propagation of liquid menisci through the granular medium during drying was dynamically followed. The effect of contact angle on the degree of dispersion of the drying front has been studied by observing drying in a layer of untreated (hydrophilic) and silanised particles; the drying front was found to be sharper in the case of the silanised (less hydrophilic) particles. This observation was confirmed by direct numerical simulations of drying in a digitally encoded porous medium identical in structure to the experimental one. The simulations also revealed that the average gas–liquid interfacial area in a given porous microstructure strongly depends on the contact angle.
Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide