Article ID Journal Published Year Pages File Type
613355 Journal of Colloid and Interface Science 2006 9 Pages PDF
Abstract

A series of novel organoclays with antibacterial activity were synthesized using Ca-montmorillonite and Chlorhexidini Acetas (CA) by ion-exchange. The resultant organoclays were characterized using X-ray diffraction (XRD), high-resolution thermogravimetric analysis (HRTG) and Fourier transform infrared spectroscopy (FTIR). Their antibacterial activity was assayed by so-called halo method. In the organoclays prepared at low CA concentration, CA ions within the clay interlayer adopt a lateral monolayer while a ‘kink’ state or a special state with partial overlapping of the intercalated CA in the organoclays prepared at 1.0–4.0 CEC. HRTG analysis demonstrates that CA located outside the clay interlayer exists in all synthesized organoclays, resulting from the complex molecular configuration of CA. The dramatic decrease of the surface adsorbed water and interlayer water is caused by the surface property transformation and the replacement of hydrated cations by cationic surfactant. These observations are supported by the results of FTIR. Antibacterial activity test against E. coli demonstrates that the antibacterial activity of the resultant organoclays strongly depends on the content of CA. Meanwhile, the resultant organoclay shows a long-term antibacterial activity that can last for at least one year. These novel organoclays are of potential use in synthesis of organoclay-based materials with antibacterial activity.

Graphical abstractA series of novel organoclays with antibacterial activity were synthesized using Ca-montmorillonite and Chlorhexidini Acetas (CA) by ion-exchange. The resultant organoclays were characterized using XRD, HRTG and FTIR. Their antibacterial activity was assayed by so-called halo method. In the organoclays prepared at low CA concentration, CA ions within the clay interlayer adopt a lateral monolayer while a ‘kink’ state or a special state with partial overlapping of the intercalated CA in the organoclays prepared at 1.0–4.0 CEC. HRTG analysis demonstrates that CA located outside the clay interlayer exists in all synthesized organoclays. Antibacterial activity test against E. coli demonstrates that the antibacterial activity of the resultant organoclays strongly depends on the content of CA. Meanwhile, the resultant organoclay shows a long-term antibacterial activity that can last for at least one year.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , , , ,