Article ID Journal Published Year Pages File Type
613409 Journal of Colloid and Interface Science 2006 5 Pages PDF
Abstract

We demonstrated the fabrication of size-controlled two-dimensional iron oxide nanodots derived from the heat treatment of ferritin molecules self-immobilized on modified silicon surfaces. Ferritin molecules were immobilized onto 3-aminopropyltrimethoxysilane (3-APMS)-modified silicon surfaces by electrostatic interactions between negatively charged amino acids of ferritin molecules and amino terminal functional groups of 3-APMS. Heat treatments were performed at 400 °C for 60 min to fabricate two-dimensional nanodots based on ferritin cores. XPS and FT-IR results clearly indicate that ferritin shells were composed of amino acids and 3-APMS modifiers on silicon surfaces were eliminated by heat treatment. Nanodots on substrate surfaces corresponded to iron oxides. The size of nanodots was tunable in the range of 0–5 (±0.75) nm by in situ reactions of iron ion chelators with ferritin molecules immobilized on substrates before heat treatment.

Graphical abstractThe fabrication of size controlled two-dimensional iron oxide nanodots derived from the heat treatment of ferritin molecules self-immobilized on modified silicon surfaces was demonstrated. The size of nanodots was tunable in the range of 0–5 (±0.75) nm by in situ reactions with iron ion chelators with ferritin molecules.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , , ,