Article ID Journal Published Year Pages File Type
613473 Journal of Colloid and Interface Science 2006 7 Pages PDF
Abstract

The morphology of silane films and the response of these films to water vapor are studied by neutron reflectivity, X-ray reflectivity, ellipsometry, and contact angle. The systems studied include bis-[3-(triethoxysilyl)propyl]tetrasulfide (bis-sulfur) and bis-[trimethoxysilylpropyl]amine (bis-amino), as well as mixtures of these two silanes. The effect of curing temperature on water-barrier properties is determined by comparing data for films cured at 180 °C with existing data for films cured at 80 °C. Higher curing temperature leads to an increase of the crosslink density as well as chemical modification for the sulfur-containing films. For bis-amino silane films, on the other hand, the effect on the water-barrier ability is negligible. Bis-amino silane is fully hydrolyzed and condensed at the curing temperature of 80 °C, so further increasing cure temperature does not affect the bulk structure of the film. For bis-sulfur and mixed films, however, higher curing temperature accelerates the hydrolysis and condensation, leading to denser films with better water-barrier performance.

Graphical abstractHigher curing temperature leads to an increase of the crosslink density as well as chemical modification of the sulfur-containing silane films. For bis-amino silane films, on the other hand, the effect of cure temperature on the water barrier ability is negligible. Bis-amino silane is fully hydrolyzed and condensed at a curing temperature of 80 °C, while a higher curing temperature is needed for sulfur-containing films.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , ,