Article ID Journal Published Year Pages File Type
613835 Journal of Colloid and Interface Science 2006 7 Pages PDF
Abstract

Electrically induced birefringence experiments were performed on dispersions consisting of sulfate latex nanospheres of two different sizes and charges dispersed in an electrolyte solution, at various ionic strengths. The induced birefringence was found to have an important contribution increasing as a quadratic power law of the volume fraction of the spheres. This shows that interparticle interactions play a role in the observed birefringence. The data were analyzed, using a theory from Hafkenscheid and Vlieger [Physica 75 (1974) 57], in terms of the changes of the interparticle separations in the directions parallel and perpendicular to the applied electric field.

Graphical abstractElectrically induced birefringence experiments were performed on dispersions consisting of sulfate latex nanospheres of two different sizes and charges dispersed in an electrolyte solution, at various ionic strengths. The induced birefringence was found to have an important contribution increasing as a quadratic power law of the volume fraction of the spheres. This shows that interparticle interactions play a role in the observed birefringence. The data were analyzed, using a theory from Hafkenscheid and Vlieger [Physica 75 (1974) 57], in terms of the changes of the interparticle separations in the directions parallel and perpendicular to the applied electric field.

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , , ,