Article ID Journal Published Year Pages File Type
613839 Journal of Colloid and Interface Science 2006 7 Pages PDF
Abstract

A hybrid constitutive model is developed to represent the thixotropic behavior of particulate suspension during zeolite crystallization from solution. This model is valid over the complete solid fraction range typical for such a process. It employs two internal variables, agglomeration and contiguity, to describe the degree to which the gel particles form short- and long-range networks. The contiguity is used to weigh the effects of hydrodynamic to chain-like network deformation on the suspension viscosity. Heterogeneous nucleation and surface reaction-controlled crystal growth are assumed to describe the evolution of microstructure and solid fraction of gel and crystals. Such a model successfully captures the thixotropic behavior of zeolite particulate suspension by comparison of the predictions with a set of experimental data.

Graphical abstractA hybrid constitutive model is developed to represent the thixotropic behavior of particulate suspension during zeolite crystallization from solution. This model is valid over the complete solid fraction range typical for such a process. It employs two internal variables, agglomeration and contiguity, to describe the degree to which the gel particles form short- and long-range networks. The contiguity is used to weigh the effects of hydrodynamic to chain-like network deformation on the suspension viscosity. Heterogeneous nucleation and surface reaction-controlled crystal growth are assumed to describe the evolution of microstructure and solid fraction of gel and crystals. Such a model successfully captures the thixotropic behavior of zeolite particulate suspension by comparison of the predictions with a set of experimental data.

Keywords
Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , ,