Article ID Journal Published Year Pages File Type
6199 Biomaterials 2014 13 Pages PDF
Abstract

Despite the enormous progress in the treatment of coronary artery diseases, they remain the most common cause of heart failure in the Western countries. New translational therapeutic approaches explore cardiomyogenic differentiation of various types of stem cells in combination with tissue-engineered scaffolds. In this study we fabricated PHBHV/gelatin constructs mimicking myocardial structural properties. Chemical structure and molecular interaction between material components induced specific properties to the substrate in terms of hydrophilicity degree, porosity and mechanical characteristics. Viability and proliferation assays demonstrated that these constructs allow adhesion and growth of mesenchymal stem cells (MSCs) and cardiac resident non myocytic cells (NMCs). Immunofluorescence analysis demonstrated that stem cells cultured on these constructs adopt a distribution mimicking the three-dimensional cell alignment of myocardium. qPCR and immunofluorescence analyses showed the ability of this construct to direct initial MSC and NMC lineage specification towards cardiomyogenesis: both MSCs and NMCs showed the expression of the cardiac transcription factor GATA-4, fundamental for early cardiac commitment. Moreover NMCs also acquired the expression of the cardiac transcription factors Nkx2.5 and TBX5 and produced sarcomeric proteins. This work may represent a new approach to induce both resident and non-resident stem cells to cardiac commitment in a 3-D structure, without using additional stimuli.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , , , , , , , , ,