Article ID Journal Published Year Pages File Type
621196 Chemical Engineering Research and Design 2015 17 Pages PDF
Abstract
Copper oxide supported on mesoporous alumina pre-treated at different temperatures was examined for catalytic reduction (SCR) of NO with CO. About 4.5% copper oxide was loaded on mesoporous alumina using wet impregnation method. Detailed investigations concluded that the activity of Cu/m-Al2O3 is strongly influenced by the active Cu phase present on bulk copper aluminate. The Copper phase on the catalyst was strongly affected by pre-treatment temperature of the host material. The optimal pre-treatment temperature of the support was found to be around 900 °C. The reaction mechanism on the catalyst surface was suitably described using L-H mechanistic model with the reduced Cuδ+ sites generated on the catalyst surface post CO oxidation playing a critical role in NO reduction.
Related Topics
Physical Sciences and Engineering Chemical Engineering Filtration and Separation
Authors
, , , , , , ,