Article ID Journal Published Year Pages File Type
621379 Chemical Engineering Research and Design 2008 13 Pages PDF
Abstract

Can we rely on the analysis of flux decline to evaluate the risks of a filter media to be clogged during filtration of a given particle suspension? This important issue can be dealt with a macroscopic approach described in this paper. We seek to identify and quantify the successive prevailing mechanisms which occur during a filtration run, directly and solely from experimental flux data. This is achieved from the collection of experimental data (filtrate volume V vs. time t) and the use of the differential equation (d2t/dV2) = k(dt/dV)n. A methodology is then proposed to define and validate experimental procedures with the purpose of quantifying occurring fouling mechanism. For the purpose of illustrating its valuable impact for a bench marking procedure, the methodology has been applied on a model system composed of a bentonite suspension and a series of microfiltration membranes of different structures.

Related Topics
Physical Sciences and Engineering Chemical Engineering Filtration and Separation
Authors
, , , ,