Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
621437 | Chemical Engineering Research and Design | 2008 | 12 Pages |
Enhancement in heat transfer due to helical coils has been reported by many researchers. While the heat transfer characteristics of double pipe helical heat exchangers are available in the literature, there exists no published experimental or theoretical analysis of a helically coiled heat exchanger considering fluid-to-fluid heat transfer, which is the subject of this work. After validating the methodology of CFD analysis of a heat exchanger, the effect of considering the actual fluid properties instead of a constant value is established. Heat transfer characteristics inside a helical coil for various boundary conditions are compared. It is found that the specification of a constant temperature or constant heat flux boundary condition for an actual heat exchanger does not yield proper modelling. Hence, the heat exchanger is analysed considering conjugate heat transfer and temperature dependent properties of heat transport media. An experimental setup is fabricated for the estimation of the heat transfer characteristics. The experimental results are compared with the CFD calculation results using the CFD package FLUENT 6.2. Based on the experimental results a correlation is developed to calculate the inner heat transfer coefficient of the helical coil.