Article ID Journal Published Year Pages File Type
622175 Chemical Engineering Research and Design 2006 11 Pages PDF
Abstract

Levulinic acid has been identified as a promising green, biomass derived platform chemical. A kinetic study on one of the key steps in the conversion of biomass to levulinic acid, i.e., the acid catalysed decomposition of glucose to levulinic acid has been performed. The experiments were performed in a broad temperature window (140–200°C), using sulphuric acid as the catalyst (0.05–1 M) and a initial glucose concentration between 0.1 and 1 M. A kinetic model of the reaction sequence was developed including the kinetics for the intermediate 5-hydroxymethyl-2-furaldehyde (HMF) and humins byproducts using a power-law approach. The yield of levulinic acid is favoured in dilute glucose solution at high acid concentration. On the basis of the kinetic results, continuous reactor configurations with a high extent of back-mixing are preferred to achieve high levulinic acid yields.

Related Topics
Physical Sciences and Engineering Chemical Engineering Filtration and Separation