Article ID Journal Published Year Pages File Type
622213 Chemical Engineering Research and Design 2010 16 Pages PDF
Abstract

Process data with imbalance class distribution has brought a significant drawback to most existing pattern recognition based fault diagnosis algorithms, which have assumed that the process data have an equal misclassification cost and relatively balanced class distribution. The frequent occurrence of the imbalance problem in real industrial process indicates the need for extra research efforts. In this paper, three novel imbalance modified kernel Fisher discriminant analysis (IM-KFDA) approaches are proposed to handle this problem. Two sample-level approaches, over-sampling KFDA and under-sampling KFDA, are presented along with proper stochastic sampling strategies. One algorithm-level approach, inductive bias KFDA, is also proposed with incorporating a novel regular weighted matrix (RWM) into the minimum Euclid distance based pattern classification rule. To improve the fault diagnosis performance, model updating modes for the sample-level and algorithm-level approaches are described, respectively. A simulation case study of Tennessee Eastman (TE) process is conducted to evaluate the proposed fault diagnosis approaches.

Related Topics
Physical Sciences and Engineering Chemical Engineering Filtration and Separation
Authors
, ,