Article ID Journal Published Year Pages File Type
6380496 Advances in Water Resources 2016 6 Pages PDF
Abstract
This paper presents a method for constructing polynomial-based approximate solutions to the Boussinesq equation with cylindrical symmetry. This equation models water injection at a single well in an unconfined aquifer; as a sample problem we examine recharge of an initially empty aquifer. For certain injection regimes it is possible to introduce similarity variables, reducing the original problem to a boundary-value problem for an ordinary differential equation. The approximate solutions introduced here incorporate both a singular part to model the behavior near the well and a polynomial part to model the behavior in the far field. Although the nonlinearity of the problem prevents decoupling of the singular and polynomial parts, the paper presents an approach for calculating the solution based on its spatial moments. This approach yields closed-form expressions for the position of the wetting front and for the form of the phreatic surface. Comparison with a highly accurate numerical solution verifies the accuracy of the newly derived approximate solutions.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, , ,