Article ID Journal Published Year Pages File Type
6411344 Journal of Hydrology 2015 13 Pages PDF
Abstract

•We proposed a new electrical-hydraulic conductivity relationship for unsaturated soils.•The relationship was applied in the prediction of unsaturated hydraulic conductivity of soils.•The predictions obtained by this new approach were more accurate than those from traditional method.

SummaryStatistical models have been widely used in soil science, hydrogeology and geotechnical engineering to predict the hydraulic conductivity of unsaturated soils. However, no effective method is available yet for the determination of the associated model parameters such as the tortuosity factor q. Considering the analogy between water flow and electrical current flow in a porous medium, in this study, we proposed to improve the predictive capability of statistical models by determining the tortuosity factor q using electrical conductivity (EC) measurements. We first developed a theoretical hydraulic-electrical conductivity (K-EC) relationship for unsaturated soils based on the bundle of capillary tubes model. This K-EC relationship was then used to form a new unsaturated soil EC model, which was verified using published experimental data. The tortuosity factor q can then be determined by fitting the new EC model to soil EC measurements. Experimental data of six soils were used to test the effectiveness of this method and it was shown that the prediction was significantly improved when compared with the one using the commonly suggested value q = 0.5. The associated root-mean-square-deviation (RMSD) between measurements and predictions is only 0.28 when q is obtained by using our proposed method. In contrast, the RMSD is 0.97 when q is simply assumed as 0.5.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, , ,