Article ID Journal Published Year Pages File Type
6411643 Journal of Hydrology 2015 10 Pages PDF
Abstract

•Pore pressure response to tide close to the boundary was measured in a sand flume.•The data show the influence of seepage face and meniscus formation at the boundary.•The data was used to assess capability of a numerical solution of Richards equation.•Two different methods were used to simulate seepage face formation at the boundary.•Model-data comparison shows a good agreement but sensitive to retention parameters.

SummaryDetailed measurements of the piezometric head from sand flume experiments of an idealised coastal aquifer forced by a simple harmonic boundary condition across a vertical boundary are presented. The measurements focus on the pore pressures very close to the interface (x=0.01m) and throw light on the details of the boundary condition, particularly with respect to meniscus suction and seepage face formation during the falling tide. Between the low and the mean water level, the response is consistent with meniscus suction free models in terms of both the vertical mean head and oscillation amplitude profiles and is consistent with the observation that this area of the interface was generally within the seepage face. Above the mean water level, the influence of meniscus formation is significant with the mean pressure head being less than that predicted by capillary free theory and oscillation amplitudes decaying faster than predicted by suction free models. The reduced hydraulic conductivity in this area due to partial drainage of pores on the falling tide also causes a delay in the response to the rising tide. The combined influence of seepage face formation, meniscus suction and reduced hydraulic conductivity generate higher harmonics with amplitudes of up to 26% of the local main harmonic. To model the influence of seepage face formation and meniscus suction a numerical solution of the Richards' equation was developed and evaluated against the data. The model-data comparison shows a good agreement with the behaviour high above the water table sensitive to the choice of moisture retention parameters.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, , , ,