Article ID Journal Published Year Pages File Type
6414916 Journal of Algebra 2013 15 Pages PDF
Abstract

We study Z-graded modules of nonzero level with arbitrary weight multiplicities over Heisenberg Lie algebras and the associated generalized loop modules over affine Kac-Moody Lie algebras. We construct new families of such irreducible modules over Heisenberg Lie algebras. Our main result establishes the irreducibility of the corresponding generalized loop modules providing an explicit construction of many new examples of irreducible modules for affine Lie algebras. In particular, to any function φ:N→{±} we associate a φ-highest weight module over the Heisenberg Lie algebra and a φ-imaginary Verma module over the affine Lie algebra. We show that any φ-imaginary Verma module of nonzero level is irreducible.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory
Authors
, , , ,