Article ID Journal Published Year Pages File Type
6415054 Journal of Functional Analysis 2016 47 Pages PDF
Abstract

We generalize to several variables the classical theorem of Nevanlinna that characterizes the Cauchy transforms of positive measures on the real line. We show that for the Loewner class, a large class of analytic functions that have non-negative imaginary part on the upper polyhalf-plane, there are representation formulae in terms of densely-defined self-adjoint operators on a Hilbert space. We find four different representation formulae and we show that every function in the Loewner class has one of the four representations, corresponding precisely to four different growth conditions at infinity.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory
Authors
, , ,