Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6415431 | Journal of Number Theory | 2015 | 8 Pages |
Abstract
For any integer n>1, we prove that2n(2nn)|âk=0nâ1(6k+1)(2kk)328(nâkâ1) and2n(2nn)|âk=0nâ1(120k2+34k+3)(2kk)4(4k2k)216(nâkâ1). The first divisibility result confirms a conjecture of Z.-W. Sun.
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory
Authors
Bing He,