Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6415609 | Journal of Number Theory | 2013 | 24 Pages |
Abstract
Let λ,δ be any real numbers with 0<λ,δ⩽1, n>max{[1λ],[1δ]} and m⩾2 be integers. We will study the distribution of the difference of an integer and its m-th power modulo n over incomplete intervals [1,[λn]]. Let (a)n denotes the integer b with 1⩽b⩽n such that bâ¡a(modn) for any integer a. DefineSm,n,λ,δ={a:1⩽a⩽λn,(a,n)=1,|aâ(am)n|⩽δn}. Some asymptotic formulas forâaâSm,n,λ,δ|aâ(am)n|k will be given for any nonnegative real number k.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory
Authors
Zhefeng Xu,