Article ID Journal Published Year Pages File Type
6415611 Journal of Number Theory 2013 18 Pages PDF
Abstract

TextIn this paper, using the fermionic p  -adic integral on ZpZp, we define the corresponding p-adic Log Gamma functions, so-called p-adic Diamond–Euler Log Gamma functions. We then prove several fundamental results for these p-adic Log Gamma functions, including the Laurent series expansion, the distribution formula, the functional equation and the reflection formula. We express the derivative of p-adic Euler L  -functions at s=0s=0 and the special values of p-adic Euler L-functions at positive integers as linear combinations of p-adic Diamond–Euler Log Gamma functions. Finally, using the p-adic Diamond–Euler Log Gamma functions, we obtain the formula for the derivative of the p  -adic Hurwitz-type Euler zeta function at s=0s=0, then we show that the p-adic Hurwitz-type Euler zeta functions will appear in the studying for a special case of p  -adic analogue of the (S,T)(S,T)-version of the abelian rank one Stark conjecture.VideoFor a video summary of this paper, please click here or visit http://youtu.be/DW77g3aPcFU.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory