Article ID Journal Published Year Pages File Type
6415710 Journal of Number Theory 2011 17 Pages PDF
Abstract

Let m be a positive integer and fm(x) be a polynomial of the form fm(x)=x2+x−m. We call a polynomial fm(x) a Rabinowitsch polynomial if for s=[m] and consecutive integers x=x0,x0+1,…,x0+s−1, |fm(x)| is either 1 or prime. In this paper, we show that there are exactly 14 Rabinowitsch polynomials fm(x).

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory
Authors
, ,