Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6418496 | Journal of Mathematical Analysis and Applications | 2014 | 15 Pages |
Abstract
We consider the regularization of the backward in time problem for a nonlinear parabolic equation in the form ut+Au(t)=f(u(t),t), u(1)=Ï, where A is a positive self-adjoint unbounded operator and f is a local Lipschitz function. As known, it is ill-posed and occurs in applied mathematics, e.g. in neurophysiological modeling of large nerve cell systems with action potential f in mathematical biology. A new version of quasi-reversibility method is described. We show that the regularized problem (with a regularization parameter β>0) is well-posed and that its solution Uβ(t) converges on [0,1] to the exact solution u(t) as βâ0+. These results extend some earlier works on the nonlinear backward problem.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis
Authors
Nguyen Huy Tuan, Dang Duc Trong,