Article ID Journal Published Year Pages File Type
6418732 Journal of Mathematical Analysis and Applications 2014 7 Pages PDF
Abstract

Estimating the counting function for the eigenvalues of the twisted bi-Laplacian leads to the Dirichlet divisor problem, which is then used to compute the trace of the heat semigroup and the Dixmier trace of the inverse of the twisted bi-Laplacian. The zeta function regularizations of the traces and determinants of complex powers of the twisted bi-Laplacian are computed. A formula for the zeta function regularizations of determinants of heat semigroups of complex powers of the twisted bi-Laplacian is given.

Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, ,