Article ID Journal Published Year Pages File Type
6419576 Journal of Mathematical Analysis and Applications 2011 17 Pages PDF
Abstract

We continue to investigate the connection between the spectrum of self-adjoint ordinary differential operators with arbitrary deficiency index d and the number of linearly independent square-integrable solutions for real values of the spectral parameter λ. We show that if, for all λ in an open interval I, there are d linearly independent square-integrable solutions, then there is no continuous spectrum in I. This for any self-adjoint realization with boundary conditions which may be separated, coupled, or mixed. The proof is based on a new characterization of self-adjoint domains and on limit-point (LP) and limit-circle (LC) solutions established in an earlier paper.

Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, , ,