Article ID Journal Published Year Pages File Type
6422433 Journal of Computational and Applied Mathematics 2015 10 Pages PDF
Abstract

Motivated by porosity changes due to chemical reactions caused by injection of cold water in a geothermal reservoir, we propose a two-dimensional pore scale model of a thin strip. The pore scale model includes fluid flow, heat transport and reactive transport where changes in aperture is taken into account. The thin strip consists of void space and grains, where ions are transported in the fluid in the void space. At the interface between void and grain, ions are allowed to precipitate and become part of the grain, or conversely, minerals in the grain can dissolve and become part of the fluid flow, and we honor the possible change in aperture these two processes cause. We include temperature dependence and possible effects of the temperature in both fluid properties and in the mineral precipitation and dissolution reactions. For the pore scale model equations, we investigate the limit as the width of the thin strip approaches zero, deriving upscaled one-dimensional effective equations.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , , ,