Article ID Journal Published Year Pages File Type
6422649 Journal of Computational and Applied Mathematics 2014 12 Pages PDF
Abstract

We consider the problem of optimal portfolio choice using the lower partial moments risk measure for a market consisting of n risky assets and a riskless asset. For when the mean return vector and variance/covariance matrix of the risky assets are specified without specifying a return distribution, we derive distributionally robust portfolio rules. We then address potential uncertainty (ambiguity) in the mean return vector as well, in addition to distribution ambiguity, and derive a closed-form portfolio rule for when the uncertainty in the return vector is modelled via an ellipsoidal uncertainty set. Our result also indicates a choice criterion for the radius of ambiguity of the ellipsoid. Using the adjustable robustness paradigm we extend the single-period results to multiple periods, and derive closed-form dynamic portfolio policies which mimic closely the single-period policy.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,