Article ID Journal Published Year Pages File Type
6423499 Discrete Mathematics 2011 7 Pages PDF
Abstract

A digraph is arc-locally in-semicomplete if for any pair of adjacent vertices x,y, every in-neighbor of x and every in-neighbor of y either are adjacent or are the same vertex. A digraph is quasi-arc-transitive if for any arc xy, every in-neighbor of x and every out-neighbor of y either are adjacent or are the same vertex. Laborde, Payan and Xuong proposed the following conjecture: Every digraph has an independent set intersecting every non-augmentable path (in particular, every longest path). In this paper, we shall prove that this conjecture is true for arc-locally in-semicomplete digraphs and quasi-arc-transitive digraphs.

Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics
Authors
, ,