Article ID Journal Published Year Pages File Type
6424760 Topology and its Applications 2012 25 Pages PDF
Abstract

We study a class of graph foliated spaces, or graph matchbox manifolds, initially constructed by Kenyon and Ghys. For graph foliated spaces we introduce a quantifier of dynamical complexity which we call its level. We develop the fusion construction, which allows us to associate to every two graph foliated spaces a third one which contains the former two in its closure. Although the underlying idea of the fusion is simple, it gives us a powerful tool to study graph foliated spaces. Using fusion, we prove that there is a hierarchy of graph foliated spaces at infinite levels. We also construct examples of graph foliated spaces with various dynamical and geometric properties.

Related Topics
Physical Sciences and Engineering Mathematics Geometry and Topology
Authors
,