Article ID Journal Published Year Pages File Type
6425044 Advances in Mathematics 2017 66 Pages PDF
Abstract

We study the uniqueness, existence, and properties of bounded distributional solutions of the initial value problem for the anomalous diffusion equation ∂tu−Lμ[φ(u)]=0. Here Lμ can be any nonlocal symmetric degenerate elliptic operator including the fractional Laplacian and numerical discretizations of this operator. The function φ:R→R is only assumed to be continuous and nondecreasing. The class of equations include nonlocal (generalized) porous medium equations, fast diffusion equations, and Stefan problems. In addition to very general uniqueness and existence results, we obtain stability, L1-contraction, and a priori estimates. We also study local limits, continuous dependence, and properties and convergence of a numerical approximation of our equations.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)
Authors
, , ,