Article ID Journal Published Year Pages File Type
6425300 Advances in Mathematics 2016 37 Pages PDF
Abstract
We study the space of generalized translation invariant valuations on a finite-dimensional vector space and construct a partial convolution which extends the convolution of smooth translation invariant valuations. Our main theorem is that McMullen's polytope algebra is a subalgebra of the (partial) convolution algebra of generalized translation invariant valuations. More precisely, we show that the polytope algebra embeds injectively into the space of generalized translation invariant valuations and that for polytopes in general position, the convolution is defined and corresponds to the product in the polytope algebra.
Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)
Authors
, ,