Article ID Journal Published Year Pages File Type
6425397 Advances in Mathematics 2015 53 Pages PDF
Abstract

In this paper, we prove that an expanding Thurston map f:S2→S2 is asymptotically h-expansive if and only if it has no periodic critical points, and that no expanding Thurston map is h-expansive. As a consequence, for each expanding Thurston map without periodic critical points and each real-valued continuous potential on S2, there exists at least one equilibrium state. For such maps, we also establish large deviation principles for iterated preimages and periodic points. It follows that iterated preimages and periodic points are equidistributed with respect to the unique equilibrium state for an expanding Thurston map without periodic critical points and a potential that is Hölder continuous with respect to a visual metric on S2.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)
Authors
,