Article ID Journal Published Year Pages File Type
6435469 Marine and Petroleum Geology 2014 20 Pages PDF
Abstract

•Dinoflagellate cysts identify the right invasion level by Paratethys waters.•Alboran Lago Mare immediately followed the post-Messinian Salinity Crisis marine reflooding.•Lago Mare must be discarded in the sense of a unique chronostratigraphic unit.

This paper provides a new environmental, sedimentological and stratigraphic context of the Lago Mare deposits from the North Alboran region and clarifies their chronologic location with respect to the Messinian Salinity Crisis. We present new micropalaeontological data (dinoflagellate cysts, calcareous nannoplankton, planktonic foraminifers), correlated with field observations and offshore seismic interpretations. We show that the Lago Mare event known in three onshore localities (Río Mendelín near Malaga, Zorreras near Sorbas, Gafares near Níjar) follows the marine reflooding of the Mediterranean Basin which ended the Messinian Salinity Crisis. Chronologically, these Lago Mare deposits last from the latest Messinian to the early Zanclean. In fact, the first influx of Paratethyan organisms is revealed by the dinoflagellate cyst record from near Malaga within a Gilbert-type fan delta overlying the Messinian Erosional Surface. Invading molluscs and/or ostracods may have persisted in lagoonal coastal areas more or less affected by discontinuous marine influxes (Sorbas and Níjar). The Malaga area is convenient for a palaeogeographic and sedimentary reconstruction which shows the prevalent forcing of sea-level changes during the time-interval 5.600-5.332 Ma at the difference of the usually solicited prevalent tectonics. The studied Lago Mare event is the third episode resulting in such a palaeobiological assemblage in the Mediterranean region and corresponds to the final two-way water exchange at high sea level between the Mediterranean and the former Paratethys. It documents the onset of the modern marine circulation in the Mediterranean after the reflooding ending the Messinian Salinity Crisis.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Economic Geology
Authors
, , , , , , , , , ,