Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
644732 | Applied Thermal Engineering | 2016 | 28 Pages |
Abstract
In this study, an analysis of steady-state and unsteady-state Conjugate Heat Transfer (CHT) of an aeronautic high pressure gas turbine was conducted, which can calculate fluid and solid domain at the same time. ANSYS CFX V16.0 was used to solve the problem. The main emphasis of this study was on three dimensional behavior of the temperature distribution in blade of the 1st stage high pressure turbine. The Conjugate heat transfer approach in this study is validated with 1983 NASA internally cooled C3X experimental data. Results from the unsteady state were compared to the results of steady state calculations. This paper focuses on the need of unsteady conjugate heat transfer analysis of the rotor blade in cooling design process, with the prediction of the thermal environment around the rotor blade and heat conduction in the rotor blade as it is quite important to carry out the thermal load analysis and life assessment of rotor blades.
Keywords
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Fluid Flow and Transfer Processes
Authors
Sunwoo Hwang, Changmin Son, Doyoung Seo, Dong-Ho Rhee, Bongjun Cha,