Article ID Journal Published Year Pages File Type
6450774 Biomaterials 2017 12 Pages PDF
Abstract

The effectiveness of radiotherapy can decrease due to inaccurate positioning of machinery and inherent radioresistance of tumors. To address this issue, we present a novel theranostic nanoplatform based on gadolinium-doped carbon dots (Gd-doped CDs) designed specifically for magnetic resonance imaging (MRI)-guided radiotherapy of tumors. The Gd-doped CDs (∼18 nm) with dispersibility in water and stable photoluminescence were synthesized via a one-step hydrothermal approach. After tail vein injection of the Gd-doped CDs, they exhibited a relatively long circulation time (∼6 h), enabled efficient passive tumor targeting. Gd-doped CDs accumulate in the kidney and could be cleared out of the body from bladder. Importantly, they exhibited favorable biocompatibility with excellent performance in longitudinal relaxivity rate (r1) of 6.45 mM−1S−1 and radiosensitization enhancements. These results show that Gd-doped CDs are excellent T1 contrast agents and radiosensitizers, possessing great promise for MRI-guided radiotherapy of tumors.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , , , , , , , ,