Article ID Journal Published Year Pages File Type
6451104 Biomaterials 2016 9 Pages PDF
Abstract

Frequent outbreaks and the rapid global spread of infectious diseases have increased the urgent need for massive vaccination especially in countries with limited resources. Intranasal vaccination facilitates the mass vaccination via needle-free delivery of vaccine through nasal mucosal surfaces. Inspired by the strong capability of calcium phosphate (CaP) materials to adhere to cells and tissues, we propose to improve nasal vaccination by using a biomineralization-based strategy. The vaccine nanohybrid was obtained by covering the viral surface with CaP nanoshell, which changed the physiochemical properties of original vaccine, resulting in the increase of mucosal adhesion to the nasal tissues. The core-shell structure was beneficial for the receptor-independent uptake and the induction of elevated local IgA response within the nasal cavity. Moreover, the vaccine complex elicited enhanced systemic antibody response that neutralized wild type of dengue virus and promoted the systemic cellular immune responses. This achievement presents the potential of CaP based vaccine biomineralization for the fabrication of needle-free vaccine formulation.

Graphical abstractDownload high-res image (281KB)Download full-size image

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , ,