Article ID Journal Published Year Pages File Type
6452529 Journal of Photochemistry and Photobiology B: Biology 2017 7 Pages PDF
Abstract

•Two COFs materials were fabricated to be photosensitizers.•The material functional property can be ameliorated by modifying the building block.•Two COFs exhibit good performance in photodynamic inactivation of bacteria.

With the increase of antibiotic resistances in microorganisms, photodynamic inactivation (PDI) as a clinically proven antibacterial therapy is gaining increasing attention in recent years due to its high efficacy. Herein, we reported two covalent organic frameworks (COFs) materials, namely COFs-Trif-Benz and COF-SDU1, as effective type-II photosensitizers for photodynamic inactivation of bacteria. COFs-Trif-Benz and COF-SDU1 are synthesized through a facile solvothermal reaction between tri-(4-formacylphenoxy)-1,3,5-triazine (trif) and benzidine or p-phenylenediamine with high yield. Their highly ordered and porous structures were confirmed by Fourier transform infrared (FT-IR) spectra, solid state 13C CP/MAS NMR spectrum, powder X-ray diffraction (PXRD) and Brunauer-Emmett-Teller (BET) analyses. The electronic absorption spectra and electrochemical experiments revealed that the extensive π-conjugation over COFs-Trif-Benz and COF-SDU1 greatly enhance their absorbance capability for visible light and make them have a lower band gap. The photocatalytic antibacterial assay was studied against both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli O86:B7 (E. coli O86) bacteria. Two materials can kill more than 90% bacteria at concentrations of 100 μg mL− 1 after 60-90 min of illumination. Thus, both COFs are effective photosensitizers. Mechanism investigation revealed the antibacterial characteristics of the COFs-Trif-Benz and COF-SDU1 can generate reactive oxygen species (ROS) by energy transfer to molecular oxygen (3O2) to produce a highly reactive singlet oxygen (1O2). Hence, the two materials during the photodynamic were mainly via mechanism type II.

Graphical AbstractDownload high-res image (211KB)Download full-size image

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , , , ,