Article ID Journal Published Year Pages File Type
645449 Applied Thermal Engineering 2015 15 Pages PDF
Abstract
In this study, two passive techniques are simultaneously investigated for heat transfer improvement (i.e. chaotic advection and nanofluids) in coiled heat exchangers. Performance of these two different coils (one with normal configuration and another with chaotic configuration) is numerically analyzed and compared for both water and nanofluid as fluid. Effects of different parameters such as geometry, types of nanofluids, nanoparticle volumetric concentration and Reynolds number on heat transfer and pressure drop are studied. The CuO and Al2O3 base water nanofluids with different nanoparticle concentrations 1-3% were simulated. Equations of conservation of mass, momentum and energy were discretized using a finite element based technique and were solved using ANSYS software. Numerical results showed that heat transfer in the chaotic coil with water as fluid was higher than that in the normal coil with nanofluids at various volumetric concentrations and addition small amount of nanofluid in the chaotic coil flow resulted in significant enhancement of heat transfer.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , , ,