Article ID Journal Published Year Pages File Type
6458610 Computers and Electronics in Agriculture 2017 6 Pages PDF
Abstract

•Classification of watermelon samples based on the backscattering parameters.•Seeded and seedless watermelons were classified using principal component analysis.•PCA classification of watermelons can be done by using backscattering imaging.

This paper evaluates the feasibility of laser-induced backscattering imaging for the classification of seeded and seedless watermelons during storage. Backscattering images were obtained from seeded and seedless watermelon samples through a laser diode emitting at 658 nm using a backscattering imaging system developed for the purpose. The pre-processed datasets extracted from the backscattering images were analysed using principal component analysis (PCA). The datasets were separated into training (75%) and testing (25%) datasets as the inputs in the classification algorithms. Three multivariate pattern recognition algorithms were used including linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), and k-nearest neighbour (kNN). The QDA-based algorithms obtained the highest overall average classification accuracies (100%) for both the seeded and seedless watermelons. The LDA and kNN-based algorithms also obtained quite high classification accuracies with all the accuracies above 90%. The laser-induced backscattering imaging technique is potentially useful for classification of seeded and seedless watermelons.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , ,