Article ID Journal Published Year Pages File Type
646725 Applied Thermal Engineering 2014 10 Pages PDF
Abstract
Full-scale data center thermal modeling and optimization using computational fluid dynamics (CFD) is generally an extremely time-consuming process. This paper presents the development of a velocity propagation method (VPM) based dynamic compact zonal model to efficiently describe the airflow and temperature patterns in a data center with a contained cold aisle. Results from the zonal model are compared to those from full CFD simulations of the same configuration. A primary objective of developing the compact model is real-time predictive capability for control and optimization of operating conditions for energy utilization. A scheme is proposed that integrates zonal model results for temperature and air flow rates with a proportional-integral-derivative (PID) controller to predict and control rack inlet temperature more precisely. The approach also uses an Artificial Neural Network (ANN) in combination with a Genetic Algorithm (GA) optimization procedure. The results show that the combined approach, built on the VPM based zonal model, can yield an effective real-time design and control tool for energy efficient thermal management in data centers.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , ,