Article ID Journal Published Year Pages File Type
646921 Applied Thermal Engineering 2013 7 Pages PDF
Abstract

This study focuses on the promotion of biomass gasification for hydrogen production in a fluidized bed reactor with the bed additives zeolite, CaO, and Ca- and Mg-based silica sands. The results show that zeolite has higher capacity for enhancing hydrogen promotion abilities than CaO with the amount was 200 g in tests. Regarding the Ca- and Mg-based silica sands, Ca/SiO2 decreases the CO2 selectivity and Mg/SiO2 enhances the H2 selectivity owing to CO2 adsorption via the formation of CaO and the promotion of the water gas shift reaction, respectively. The optimal concentration of Mg-based bed materials corresponds to a Mg concentration of 0.5 wt.%. The additives play important roles in increasing the reaction rate, enhancing the biomass gasification, and promoting carbon transformation.

Graphical abstractThe aim of this study is not only in estimation of the influence of the alkaline metals concentrations, but also in preparation of the modified fluidization mediums. A basic stoichiometric analysis of alkaline concentration for hydrogen production during biomass gasification in fluidized bed is also in consideration.Figure optionsDownload full-size imageDownload as PowerPoint slideHighlights► Various bed-additives concentrations on syngas performance are discussed. ► All additives significantly increase rate of hydrogen production in gasification. ► Zeolite has higher capacity for enhancing hydrogen production rate than CaO. ► Ca-based additives promoted the heating value and cold gas efficiency. ► The optimal concentration of Mg-based additive was 0.5 wt.% for hydrogen production.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , ,