Article ID Journal Published Year Pages File Type
647037 Applied Thermal Engineering 2012 8 Pages PDF
Abstract

The computational fluid dynamic software FLUENT is used in assessing the electronics cooling potential of a plate pin fin heat sink (PPFHS), including the conjugate effect. The simulation results are validated with reported experimental data. The simulation shows that pin height and air velocity have significant influences on the thermal hydraulic performances of PPFHS while the influences of in-line/staggered array and neighbor pin flow-directional center distance (NPFDCD) of the PPFHS are less notable. In applying the present design to the cooling of a desktop PC CPU at a heat flux of 2.20 W/cm2, the temperature can be kept at less than 358 K with an air velocity over 6.5 m/s.

► Pin height and air velocity significantly influence thermal performance of PPFHS. ► Less influence by in-line or staggered array. ► Less influence by neighbor pin flow-directional center distance. ► Design with >6.5 m/s air can cool to <358 K, for desktop PC CPU with 2.20 W/cm2 flux.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , , , , ,