Article ID Journal Published Year Pages File Type
647101 Applied Thermal Engineering 2012 7 Pages PDF
Abstract

Ongoing research and development works suggest that good system configurations have significant potential for improving the performance and reducing the cost and size of rotary desiccant dehumidification and air conditioning system. In this paper, a novel desiccant cooling system using regenerative evaporative cooling and a one-rotor two-stage desiccant cooling system are analyzed and compared under Air-conditioning and Refrigeration Institute (ARI) summer, ARI humid and Shanghai summer conditions. The objective of this paper is to compare the thermodynamic performance of the two systems and obtain useful data for practical application. It is found that compared with the conventional desiccant cooling system, the novel desiccant cooling system with regenerative evaporative cooling can handle air to a much lower temperature while maintaining good thermal performance. Under ARI summer, ARI humid and Shanghai summer conditions, the minimum attainable supply air temperatures are reduced from 13.5 °C to 7.9 °C, from 14.2 °C to 9.2 °C and from 18.0 °C to 13.0 °C respectively. It is suggested that the novel desiccant cooling system with regenerative evaporative cooling is beneficial to breaking the obstacle of limited temperature reduction encountered by conventional desiccant cooling system, especially in the case of extreme high humid conditions.

► Desiccant cooling system with regenerative evaporative cooling (REDC) has been studied. ► Comparison between REDC and conventional desiccant cooling system (DCS) has been performed. ► REDC is superior to conventional DCS in thermal utilization, air conditioning and energy saving. ► REDC has significant potential for breaking the obstacle of limited temperature reduction.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , , , ,