Article ID Journal Published Year Pages File Type
647358 Applied Thermal Engineering 2012 8 Pages PDF
Abstract

The aim of this work is the evaluation of the radiation contribution to the steady-state heat transfer in metallic foams by means of the radiative conductivity model. Because of the complexity of the structure, reference is made to a simplified physical radiative model, where the elementary cell of the foams is treated as a cubic cell. The contribution of the radiation heat transfer is investigated on a local basis. The local radiative conductivity has been used to evaluate the influence of radiative heat transfer in a two dimensional conductive-convective-radiative problem involving a forced fluid flow within a heated channel filled with a metallic foam. The effect of the solid emissivity and the foam porosity is pointed out for different foams.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , , ,