Article ID Journal Published Year Pages File Type
648116 Applied Thermal Engineering 2010 6 Pages PDF
Abstract
Composites graphite/salt for thermal energy storage at high temperature (∼200 °C) have been developed and tested. As at low temperature in the past, graphite has been used to enhance the thermal conductivity of the eutectic system KNO3/NaNO3. A new elaboration method has been proposed as an alternative to graphite foams infiltration. It consists of cold-compression of a physical mixing of expanded natural graphite particles and salt powder. Two different compression routes have been investigated: uni-axial compression and isostatic compression. The first part of the paper has been devoted to the analysis of the thermal properties of these new graphite/salt composites. It is proven that cold-compression is a simple and efficient technique for improving the salt thermal conductivity. For instance, graphite amounts between 15 and 20%wt lead to apparent thermal conductivities close to 20 W/m/K (20 times greater than the thermal conductivity of the salt). Furthermore, some advantages in terms of cost and safety are expected because materials elaboration is carried out at room temperature. The second part of the paper is focused on the analyses of the phase transition properties of these graphite/salt composites materials.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , ,