Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6481868 | International Journal of Pharmaceutics | 2016 | 7 Pages |
Here we report that new dual-targeted theranostic anti-cancer agents can be produced by simple conjugation of photosensitizers with tryptophan-containing peptide ligands via cyclic disulfide linkages. In the proof-of-concept study, photosensitizers conjugated with EGFR-targeting peptide GE11 (C-EGFR) were in close proximity with tryptophan residues in the conjugate, resulting in quenching of its fluorescence and singlet oxygen generation. C-EGFR specifically binds to target receptors on the cancer cell surface, after which it is internalized via receptor-mediated endocytosis. Intracellular cleavage of cyclic disulfide bonds allows separation of the photosensitizers from the tryptophan residue, after which they emit near-infrared (NIR) fluorescence and produce a phototoxic effect in the target cells. This strategy enabled us to accomplish simultaneous real-time NIR fluorescence imaging of EGFR-overexpressing cancer cells with high contrast and selective photodynamic therapy
Graphical abstractDownload high-res image (154KB)Download full-size image