Article ID Journal Published Year Pages File Type
6481890 International Journal of Pharmaceutics 2016 11 Pages PDF
Abstract

Rheumatic heart disease represents a leading cause of mortality caused by Group A Streptococcus (GAS) infections transmitted through the respiratory route. Although GAS infections can be treated with antibiotics these are often inadequate. An efficacious GAS vaccine holds more promise, with intranasal vaccination especially attractive, as it mimics the natural route of infections and should be able to induce mucosal IgA and systemic IgG immunity. Nanoparticles were prepared by either encapsulating or coating lipopeptide-based vaccine candidate (LCP-1) on the surface of poly(lactic-co-glycolic acid) (PLGA). In vitro study showed that encapsulation of LCP-1 vaccine into nanoparticles improved uptake and maturations of antigen-presenting cells. The immunogenicity of lipopeptide incorporated PLGA-based nanoparticles was compared with peptides co-administered with mucosal adjuvant cholera toxin B in mice upon intranasal administration. Higher levels of J14-specific salivary mucosal IgA and systemic antibody IgG titres were observed for groups immunized with encapsulated LCP-1 compared to LCP-1 coated nanoparticles or free LCP-1. Systemic antibodies obtained from LCP-1 encapsulated PLGA NPs inhibited the growth of bacteria in six different GAS strains. Our results show that PLGA-based lipopeptide delivery is a promising approach for rational design of a simple, effective and patient friendly intranasal GAS vaccine resulting in mucosal IgA response.

Graphical abstractDownload high-res image (134KB)Download full-size image

Related Topics
Health Sciences Pharmacology, Toxicology and Pharmaceutical Science Pharmaceutical Science
Authors
, , , , , , , , , ,