Article ID Journal Published Year Pages File Type
648211 Applied Thermal Engineering 2018 8 Pages PDF
Abstract
This paper outlines a novel first-principles mathematical model to simulate the thermo-hydraulic behavior of compact fan-supplied tube-fin heat exchangers for light commercial refrigeration applications, i.e., with heat duties ranging from 0.5 to 2.0 kW. The model is based on the mass, momentum and energy conservation equations applied to both the refrigerant and air streams. The model predictions were compared with experimental data taken at several operating and geometric conditions. It was found that the model predictions for the air-side heat transfer and pressure drop were very close to the experimental data with maximum deviations of ±10% and ±15%, respectively. The model was employed to assess the thermal-hydraulic performance of a gas cooler running with supercritical CO2 as working fluid.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , , ,