Article ID Journal Published Year Pages File Type
648230 Applied Thermal Engineering 2010 10 Pages PDF
Abstract

Numerical simulations and experimental tests were carried out to study the fluid flow and heat transfer characteristics for a rectangular-shaped microchannel heat exchanger. Moreover, influences of gravity to heat transfer and pressure drop behaviors of the microchannel heat exchanger were presented by variation of the physical inclinations of the microchannel heat exchanger system used for experiments. For experimental results, a heat flux of 17.4 W/cm2 was achieved for the heat exchanger. Besides, the results obtained for the actual effectiveness and for the effectiveness (the so-called effectiveness-NTU method) were determined. In this study, the pressure drop decreases as the water temperature rises. As the pressure drop increases from 880 to 4400 Pa, the mass flow rate increases from 0.1812 to 0.8540 g/s. In addition, the results obtained from numerical analyses were in good agreement with those obtained from experiments, with discrepancies of the heat transfer coefficient estimated to be less than 9%.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , ,