Article ID Journal Published Year Pages File Type
6484139 Biocybernetics and Biomedical Engineering 2018 10 Pages PDF
Abstract
Atrial fibrillation (AF) is the most common type of sustained arrhythmia. The electrocardiogram (ECG) signals are widely used to diagnose the AF. Automated diagnosis of AF can aid the clinicians to make a more accurate diagnosis. Hence, in this work, we have proposed a decision support system for AF using a novel nonlinear approach based on flexible analytic wavelet transform (FAWT). First, we have extracted 1000 ECG samples from the long duration ECG signals. Then, log energy entropy (LEE), and permutation entropy (PEn) are computed from the sub-band signals obtained using FAWT. The LEE and PEn features are extracted from different frequency bands of FAWT. We have found that LEE features showed better classification results as compared to PEn. The LEE features obtained maximum accuracy, sensitivity, and specificity of 96.84%, 95.8%, and 97.6% respectively with random forest (RF) classifier. Our system can be deployed in hospitals to assist cardiac physicians in their diagnosis.
Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , ,